Acura = Alfa-Romeo = Alpina = Artega = Ascari = Aston-Martin = Audi = BMW = Bentley = Brabus = Bugatti = Buick = Cadillac = Caparo = Chevrolet = Chrysler = Citroen = Covini = Dacia = Daewoo = Daihatsu = Daimler = Devon = Dodge = Donkervoort = Farbio = Ferrari = Fiat = Fisker = Ford = GM = GMC = Gumpert = Holden = Honda = Hummer = Hyundai = Infiniti = Italdesign = Jaguar = Jeep = KTM = Kia = Koenigsegg = Lamborghini = Lancia = Land Rover = Leblanc = Lexus = Lincoln = Lobini = Lotus = MG = Mansory = Maserati = Maybach = Mazda = Mazel = McLaren = Mercedes-Benz = Mercury = Mindset = Mini = Mitsubishi = Morgan = Nismo = Nissan = Noble = ORCA = Oldsmobile = Opel = PGO = Pagani = Plymouth = Pontiac = Porsche = Renault = Rolls-Royce = Rover = Saab = Saturn = Scion = Skoda = Smart = Spyker = SsangYong = Startech = Stola = Strosek = Torino = Subaru = Think = Toyota = Tramontana = Valmet = Vauxhall = Venturi = Volvo = Wiesmann = Yes = Zagato = Zenvo.

Friday, February 11, 2011

Land Rover Range Rover, 2010

Land Rover Range Rover, 2010


  

Powerful new engines, advanced interior technologies and enhanced driving dynamics reinforce the position of the 2010 Land Rover Range Rover as Land Rover's most complete luxury all-terrain vehicle. Land Rover's flagship has been comprehensively updated to deliver more refined and efficient performance, along with the ultimate in interior comfort and craftsmanship.

The 2010 Land Rover Range Rover has two brand new 5.0-liter LR-V8 engines - the top of the range 510 bhp supercharged unit, and the 375 bhp naturally aspirated version. Both engines were developed in-house by the Jaguar Land Rover powertrain team, with the requirements of the Land Rover Range Rover in mind from day one.

The LR-V8 engines have been developed to deliver more power and refinement but without a corresponding increase in consumption and emissions. The result is a pair of lightweight direct fuel injection engines with class-leading efficiency, which provide significantly more usable low end torque and superior dynamic responses without compromising power at higher RPM. Both engines are compliant with stringent U.S. ULEV2 emissions regulations.

The performance of the all-new naturally aspirated LR-V8 is now a virtual-match for the outgoing 4.2L supercharged engine. The new naturally aspirated vehicle completes the 0-60 mph sprint in 7.2 seconds (just 0.1 seconds off the pace of the outgoing supercharged unit). For those who want the ultimate performance Land Rover Range Rover, there is now the all-new LR-V8 5.0L Supercharged, which is propelled from rest to 60 mph in an impressive 5.9 seconds.

The 2010 improvements include subtle exterior revisions, featuring discrete changes to the headlights, grille and bumper which enhance the classic Land Rover Range Rover design with more contemporary detailing. The interior benefits from more luxurious materials and finishes which add further refinements to the premium cabin ambiance.

More significantly, the 2010 Land Rover Range Rover uses some revolutionary new interior technologies which enhance the experience for both driver and passengers alike.

A dramatic innovation is found in the instrument cluster. Here, traditional physical instruments are replaced by a 12" Thin Film Transistor screen which presents all essential driver information via cleverly designed 'virtual' dials and graphical displays.
The vehicle incorporates state-of-the-art Adaptive Dynamics technology (optional on LR-V8 naturally aspirated) to further improve the Land Rover Range Rover's peerless ride quality. All-terrain performance is also enhanced by updates to the Terrain Response and Stability Control systems.

The Land Rover Range Rover gets an all-new engine line up with a choice of two 5.0-liter LR-V8 units in supercharged and naturally aspirated guise. The two engines were developed in conjunction with Jaguar, which is the first time engines have been designed from the onset with the requirements of both brands in mind. Shared primary objectives included the highest possible torque and fast response from low revs.

Though the basic engine architecture of both engines is the same for each brand, Land Rover engine requirements differ to satisfy demanding all-terrain needs. For example, the engines feature a deeper sump to accommodate the extreme tilting angles experienced when driving the Land Rover Range Rover off-road, and to accommodate the front differential which attaches to it. In addition, belt drives are waterproofed, as are the alternator, air conditioning compressor, power steering pump and starter motor.

The supremely powerful supercharged LR-V8 delivers 510 bhp and 461 lb/ft of torque, while the naturally aspirated version produces 375 bhp and 375 lb/ft of torque. Two of the most advanced engines ever built, they are packed with innovative features to ensure that they are also two of the most efficient in their class.

Both derivatives were developed with an emphasis on delivering a smooth, refined and responsive driver experience, with excellent power characteristics. Compared to the current 4.2-liter V8 the supercharged engine increases power and torque outputs by 29 percent and 12 percent respectively.

Yet when it comes to regulated emissions both engines are incredibly clean, meeting the stringent American ULEV2 (ultra low emissions vehicle) regulations.

Direct injection - increased power and torque, lower emissions
One of the key features of the new LR-V8 is an industry first, centrally-mounted, multi-hole, spray-guided fuel injection system, delivering fuel at a pressure of up to 150bar (2,175 psi) directly to the cylinder. The positioning of the injectors ensures fuel is precisely delivered to the center of the combustion chamber, maximizing air-fuel mixing, and improving combustion control.

Fuel is delivered by twin, high pressure fuel pumps driven via an auxiliary shaft in the all new engine block. Delivery of fuel direct to the cylinder has substantially contributed to improved low speed, dynamic response which is particularly useful off-road while adding to driving pleasure on-road. The charge cooling effects of the direct injection fuel system have allowed the compression ratio of the naturally aspirated engine to be raised to 11.5:1, further improving the engine efficiency.

During the engine warm-up phase, the combustion system employs multiple injection mode strategies to deliver 50 percent more heat for fast catalyst warm-up and reduced emissions.

0 comments:

Post a Comment